Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.056
Filtrar
1.
MAbs ; 16(1): 2342243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650451

RESUMEN

The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.


Asunto(s)
Empalme Alternativo , Animales , Subunidades de Proteína/genética , Humanos , Pollos , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/biosíntesis , Células CHO , Exones/genética , Cricetulus , Proteínas Fluorescentes Verdes/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/biosíntesis , Precursores del ARN/genética
2.
Elife ; 122024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577979

RESUMEN

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


Asunto(s)
Precursores del ARN , Transcripción Genética , Animales , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN , Intrones/genética , Mamíferos/genética
3.
Wiley Interdiscip Rev RNA ; 15(2): e1836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38453211

RESUMEN

Protein-only RNase P (PRORP) is an essential enzyme responsible for the 5' maturation of precursor tRNAs (pre-tRNAs). PRORPs are classified into three categories with unique molecular architectures, although all three classes of PRORPs share a mechanism and have similar active sites. Single subunit PRORPs, like those found in plants, have multiple isoforms with different localizations, substrate specificities, and temperature sensitivities. Most recently, Arabidopsis thaliana PRORP2 was shown to interact with TRM1A and B, highlighting a new potential role between these enzymes. Work with At PRORPs led to the development of a ribonuclease that is being used to protect against plant viruses. The mitochondrial RNase P complex, found in metazoans, consists of PRORP, TRMT10C, and SDR5C1, and has also been shown to have substrate specificity, although the cause is unknown. Mutations in mitochondrial tRNA and mitochondrial RNase P have been linked to human disease, highlighting the need to continue understanding this complex. The last class of PRORPs, homologs of Aquifex RNase P (HARPs), is found in thermophilic archaea and bacteria. This most recently discovered type of PRORP forms a large homo-oligomer complex. Although numerous structures of HARPs have been published, it is still unclear how HARPs bind pre-tRNAs and in what ratio. There is also little investigation into the substrate specificity and ideal conditions for HARPs. Moving forward, further work is required to fully characterize each of the three classes of PRORP, the pre-tRNA binding recognition mechanism, the rules of substrate specificity, and how these three distinct classes of PRORP evolved. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Asunto(s)
Arabidopsis , Ribonucleasa P , Humanos , Ribonucleasa P/genética , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribonucleasas/metabolismo , Endonucleasas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN/metabolismo , Arabidopsis/genética , Especificidad por Sustrato
4.
Wiley Interdiscip Rev RNA ; 15(2): e1835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38479802

RESUMEN

The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Asunto(s)
ARN Catalítico , Ribonucleasa P , Ribonucleasa P/química , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Precursores del ARN/genética , ARN Catalítico/química , Secuencia de Bases , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN
5.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542364

RESUMEN

Retinitis pigmentosa 11 is an untreatable, dominantly inherited retinal disease caused by heterozygous mutations in pre-mRNA processing factor 31 PRPF31. The expression level of PRPF31 is linked to incomplete penetrance in affected families; mutation carriers with higher PRPF31 expression can remain asymptomatic. The current study explores an antisense oligonucleotide exon skipping strategy to treat RP11 caused by truncating mutations within PRPF31 exon 12 since it does not appear to encode any domains essential for PRPF31 protein function. Cells derived from a patient carrying a PRPF31 1205C>A nonsense mutation were investigated; PRPF31 transcripts encoded by the 1205C>A allele were undetectable due to nonsense-mediated mRNA decay, resulting in a 46% reduction in PRPF31 mRNA, relative to healthy donor cells. Antisense oligonucleotide-induced skipping of exon 12 rescued the open reading frame with consequent 1.7-fold PRPF31 mRNA upregulation in the RP11 patient fibroblasts. The level of PRPF31 upregulation met the predicted therapeutic threshold of expression inferred in a non-penetrant carrier family member harbouring the same mutation. This study demonstrated increased PRPF31 expression and retention of the nuclear translocation capability for the induced PRPF31 isoform. Future studies should evaluate the function of the induced PRPF31 protein on pre-mRNA splicing in retinal cells to validate the therapeutic approach for amenable RP11-causing mutations.


Asunto(s)
Oligonucleótidos Antisentido , Precursores del ARN , Retinitis Pigmentosa , Humanos , Precursores del ARN/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Sistemas de Lectura Abierta , Mutación , Codón sin Sentido , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Linaje
6.
Genome Res ; 34(2): 231-242, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38471738

RESUMEN

A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.


Asunto(s)
ARN Polimerasa II , Precursores del ARN , Humanos , Animales , Ratones , ARN Polimerasa II/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Transcripción Genética , Empalme del ARN , ARN Mensajero/metabolismo , Adenosina Desaminasa/genética
7.
Front Immunol ; 15: 1354500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495873

RESUMEN

Little is known about the role of alternative splicing (AS) in regulating gene expression in Mycobacteria-infected individuals in distinct stages of infection. Pre-mRNA AS consists of the removal of introns and the assembly of exons contained in eukaryotic genes. AS events can influence transcript stability or structure with important physiological consequences. Using RNA-Seq data from peripheral blood (PB) and ileocecal valve (ICV) samples collected from Holstein cattle with focal and diffuse paratuberculosis (PTB)-associated histopathological lesions in gut tissues and without lesions (controls), we detected differential AS profiles between the infected and control groups. Four of the identified AS events were experimentally validated by reverse transcription-digital droplet PCR (RT-ddPCR). AS events in several genes correlated with changes in gene expression. In the ICV of animals with diffuse lesions, for instance, alternatively spliced genes correlated with changes in the expression of genes involved in endocytosis, antigen processing and presentation, complement activation, and several inflammatory and autoimmune diseases in humans. Taken together, our results identified common mechanisms of AS involvement in the pathogenesis of PTB and human diseases and shed light on novel diagnostic and therapeutic interventions to control these diseases.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Humanos , Precursores del ARN/genética , Empalme Alternativo , Paratuberculosis/genética , Inmunidad
8.
Plant Sci ; 342: 112056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438082

RESUMEN

Most of mRNAs in Eukaryote were matured after the removal of introns in their pre-mRNA transcripts. Serine/arginine-rich (SR) proteins are a group of splicing regulators regulating the splicing processes globally. Expressions of SR proteins themselves were extensively regulated, at both transcription and splicing levels, under different environmental conditions, specially heat stress conditions. The pine genome is characterized by super-long and easily methylated introns in a large number of genes that derived from the extensive accumulation of transposons (TEs). Here, we identified and analyzed the phylogenetic characteristics of 24 SR proteins and their encoding genes from the pine genome. Then we explored transcription and pre-mRNA splicing expression patterns of SR genes in P. massoniana seedlings under normal and heat stress temperature conditions. Our results showed that the transcription patterns of SR genes in pine exhibited significant changes compared to other plant species, and these changes were not strictly correlated with the intron length and DNA methylation intensity of the SR genes. Interestingly, none of the long introns of SR genes underwent alternative splicing (AS) in our experiment. Furthermore, the intensity of AS regulation may be related to the potential DNA methylation intensity of SR genes. Taken together, this study explores for the first time the characteristics of significant variations in the transcription and splicing patterns of SR proteins in a plant species with an over-accumulation of super-long introns.


Asunto(s)
Arabidopsis , Precursores del ARN , Intrones/genética , Precursores del ARN/genética , Filogenia , Arabidopsis/genética , Empalme del ARN , Empalme Alternativo/genética
9.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488852

RESUMEN

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.


Asunto(s)
Neuroblastoma , Precursores del ARN , Sulfonamidas , Humanos , Animales , Ratones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Glutaminasa/genética , Reprogramación Metabólica , Histona Demetilasas con Dominio de Jumonji/metabolismo
10.
Wiley Interdiscip Rev RNA ; 15(2): e1838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509732

RESUMEN

Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/metabolismo , Antígeno Ventral Neuro-Oncológico
11.
Methods Mol Biol ; 2784: 133-146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502483

RESUMEN

RNA-fluorescence in situ hybridization (RNA-FISH) is an essential and widely used tool for visualizing RNA molecules in intact cells. Recent advances have increased RNA-FISH sensitivity, signal detection efficiency, and throughput. However, detection of endogenous mRNA splice variants has been challenging due to the limits of visualization of RNA-FISH fluorescence signals and due to the limited number of RNA-FISH probes per target. HiFENS (high-throughput FISH detection of endogenous pre-mRNA splicing isoforms) is a method that enables visualization and relative quantification of mRNA splice variants at single-cell resolution in an automated high-throughput manner. HiFENS incorporates HCR (hybridization chain reaction) signal amplification strategies to enhance the fluorescence signal generated by low abundance transcripts or a small number of FISH probes targeting short stretches of RNA, such as single exons. The technique offers a significant advance in high-throughput FISH-based RNA detection and provides a powerful tool that can be used as a readout in functional genomics screens to discover and dissect cellular pathways regulating gene expression and alternative pre-mRNA splicing events.


Asunto(s)
Precursores del ARN , ARN , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Hibridación Fluorescente in Situ/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hibridación de Ácido Nucleico , Empalme Alternativo
12.
Nature ; 626(8001): 1116-1124, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355802

RESUMEN

Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.


Asunto(s)
Elementos Transponibles de ADN , Intrones , Precursores del ARN , Empalme del ARN , ARN Mensajero , Animales , Humanos , Masculino , Ratones , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Exones/genética , Genoma/genética , Intrones/genética , Especificidad de Órganos/genética , ARN de Interacción con Piwi/genética , ARN de Interacción con Piwi/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermátides/citología , Espermátides/metabolismo , Empalme del ARN/genética , Testículo , Meiosis
13.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396760

RESUMEN

Serine/arginine-rich splicing factors (SRSFs) are a family of proteins involved in RNA metabolism, including pre-mRNA constitutive and alternative splicing. The role of SRSF proteins in regulating mitochondrial activity has already been shown for SRSF6, but SRSF4 altered expression has never been reported as a cause of bone marrow failure. An 8-year-old patient admitted to the hematology unit because of leukopenia, lymphopenia, and neutropenia showed a missense variant of unknown significance of the SRSF4 gene (p.R235W) found via whole genome sequencing analysis and inherited from the mother who suffered from mild leuko-neutropenia. Both patients showed lower SRSF4 protein expression and altered mitochondrial function and energetic metabolism in primary lymphocytes and Epstein-Barr-virus (EBV)-immortalized lymphoblasts compared to healthy donor (HD) cells, which appeared associated with low mTOR phosphorylation and an imbalance in the proteins regulating mitochondrial biogenesis (i.e., CLUH) and dynamics (i.e., DRP1 and OPA1). Transfection with the wtSRSF4 gene restored mitochondrial function. In conclusion, this study shows that the described variant of the SRSF4 gene is pathogenetic and causes reduced SRSF4 protein expression, which leads to mitochondrial dysfunction. Since mitochondrial function is crucial for hematopoietic stem cell maintenance and some genetic bone marrow failure syndromes display mitochondrial defects, the SRSF4 mutation could have substantially contributed to the clinical phenotype of our patient.


Asunto(s)
Médula Ósea , Mitocondrias , Neutropenia , Factores de Empalme Serina-Arginina , Niño , Humanos , Empalme Alternativo , Médula Ósea/metabolismo , Médula Ósea/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosfoproteínas/metabolismo , Precursores del ARN/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
14.
EMBO J ; 43(6): 1065-1088, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383864

RESUMEN

The B complex is a key intermediate stage of spliceosome assembly. To improve the structural resolution of monomeric, human spliceosomal B (hB) complexes and thereby generate a more comprehensive hB molecular model, we determined the cryo-EM structure of B complex dimers formed in the presence of ATP γ S. The enhanced resolution of these complexes allows a finer molecular dissection of how the 5' splice site (5'ss) is recognized in hB, and new insights into molecular interactions of FBP21, SNU23 and PRP38 with the U6/5'ss helix and with each other. It also reveals that SMU1 and RED are present as a heterotetrameric complex and are located at the interface of the B dimer protomers. We further show that MFAP1 and UBL5 form a 5' exon binding channel in hB, and elucidate the molecular contacts stabilizing the 5' exon at this stage. Our studies thus yield more accurate models of protein and RNA components of hB complexes. They further allow the localization of additional proteins and protein domains (such as SF3B6, BUD31 and TCERG1) whose position was not previously known, thereby uncovering new functions for B-specific and other hB proteins during pre-mRNA splicing.


Asunto(s)
Empalme del ARN , Empalmosomas , Humanos , Empalmosomas/genética , Microscopía por Crioelectrón , Sitios de Empalme de ARN , Exones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Elongación Transcripcional/genética , Proteínas Nucleares/metabolismo
15.
Plant Cell Environ ; 47(5): 1782-1796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38315745

RESUMEN

Alternative splicing (AS) is an important regulatory mode at the post-transcriptional level, through which many flowering genes regulate floral transition by producing multiple transcripts, and splicing factors have essential roles in this process. Hydrogen sulphide (H2S) is a newly found gasotransmitter that has critical physiological roles in plants, and one of its potential modes of action is via persulfidation of target proteins at specific cysteine sites. Previously, it has been shown that both the splicing factor AtU2AF65a and H2S are involved in the regulation of plant flowering. This study found that, in Arabidopsis, the promoting effect of H2S on flowering was abolished in atu2af65a-4 mutants. Transcriptome analyses showed that when AtU2AF65a contained mutations, the regulatory function of H2S during the AS of many flowering genes (including SPA1, LUH, LUG and MAF3) was inhibited. The persulfidation assay showed that AtU2AF65a can be persulfidated by H2S, and the RNA immunoprecipitation data indicated that H2S could alter the binding affinity of AtU2AF65a to the precursor messenger RNA of the above-mentioned flowering genes. Overall, our results suggest that H2S may regulate the AS of flowering-related genes through persulfidation of splicing factor AtU2AF65a and thus lead to early flowering in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sulfuro de Hidrógeno , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Empalme de ARN/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Empalme Alternativo/genética , Precursores del ARN/genética , Regulación de la Expresión Génica de las Plantas , Flores/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Cells ; 13(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391939

RESUMEN

Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. Some of them have homologs in yeast S. cerevisiae, and their function can be inferred from the structural and biochemical data obtained for the yeast counterparts. The functions of human proteins RPF1 and ESF1 remain largely unclear, although RPF1 has been recently shown to participate in 60S biogenesis. Both proteins have drawn our attention since they contribute to the early stages of ribosome biogenesis, which are far less studied than the later stages. In this study, we employed the loss-of-function shRNA/siRNA-based approach to the human cell line HEK293 to determine the role of RPF1 and ESF1 in ribosome biogenesis. Downregulating RPF1 and ESF1 significantly changed the pattern of RNA products derived from 47S pre-rRNA. Our findings demonstrate that RPF1 and ESF1 are associated with different pre-ribosomal particles, pre-60S, and pre-40S particles, respectively. Our results allow for speculation about the particular steps of pre-rRNA processing, which highly rely on the RPF1 and ESF1 functions. We suggest that both factors are not directly involved in pre-rRNA cleavage but rather help pre-rRNA to acquire the conformation favoring its cleavage.


Asunto(s)
Precursores del ARN , Proteínas de Unión al ARN , Humanos , Células HEK293 , Ribosomas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
Nucleic Acids Res ; 52(5): 2093-2111, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38303573

RESUMEN

Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.


The removal of introns and the joining of exons into mature mRNA by the spliceosome is crucial in regulating gene expression, simultaneously safeguarding genome integrity and enhancing proteome diversity in multicellular organisms. Spliceosome dysfunction is thus associated with various diseases and organismal aging. Our study describes the cascade of events in response to spliceosome dysfunction. We identified two transcription factors as drivers of a stress response program triggered by spliceosome dysfunction, which dramatically remodel gene expression to protect tissue integrity and induce a senescent-like state in damaged cells prior to their inevitable elimination. Together, we highlight the indispensable role of spliceosomes in maintaining homeostasis and implicate spliceosome dysfunction in senescent cell accumulation associated with the pathomechanisms of spliceopathies and aging.


Asunto(s)
Proteínas de Unión al ADN , Ribonucleoproteína Nuclear Pequeña U5 , Empalmosomas , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Animales , Drosophila melanogaster , Proteínas de Unión al ADN/metabolismo
18.
Nature ; 627(8002): 212-220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355801

RESUMEN

Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Transporte de ARN , ARN Circular , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/antagonistas & inhibidores , Carioferinas/deficiencia , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , ARN Circular/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Exportina 1/metabolismo , Transporte de Proteínas
19.
Cell Death Dis ; 15(2): 160, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383492

RESUMEN

Dysregulation of anti-apoptotic and pro-apoptotic protein isoforms arising from aberrant splicing is a crucial hallmark of cancers and may contribute to therapeutic resistance. Thus, targeting RNA splicing to redirect isoform expression of apoptosis-related genes could lead to promising anti-cancer phenotypes. Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. In this study, through RT-PCR and Western Blot analysis, we found that BCLX pre-mRNA is aberrantly spliced in GBM cells with a favored splicing of anti-apoptotic Bcl-xL. Modulation of BCLX pre-mRNA splicing using splice-switching oligonucleotides (SSOs) efficiently elevated the pro-apoptotic isoform Bcl-xS at the expense of the anti-apoptotic Bcl-xL. Induction of Bcl-xS by SSOs activated apoptosis and autophagy in GBM cells. In addition, we found that ionizing radiation could also modulate the alternative splicing of BCLX. In contrast to heavy (carbon) ion irradiation, low energy X-ray radiation-induced an increased ratio of Bcl-xL/Bcl-xS. Inhibiting Bcl-xL through splicing regulation can significantly enhance the radiation sensitivity of 2D and 3D GBM cells. These results suggested that manipulation of BCLX pre-mRNA alternative splicing by splice-switching oligonucleotides is a novel approach to inhibit glioblastoma tumorigenesis alone or in combination with radiotherapy.


Asunto(s)
Glioblastoma , Precursores del ARN , Humanos , Empalme Alternativo/genética , Apoptosis/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Oligonucleótidos/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética
20.
Virology ; 592: 109986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290414

RESUMEN

The large amount of viral RNA produced during infections has the potential to interact with and effectively sequester cellular RNA binding proteins, thereby influencing aspects of post-transcriptional gene regulation in the infected cell. Here we demonstrate that the abundant 5' leader RNA region of SARS-CoV-2 viral RNAs can interact with the cellular polypyrimidine tract binding protein (PTBP1). Interestingly, the effect of a knockdown of PTBP1 protein on cellular gene expression is also mimicked during SARS-CoV-2 infection, suggesting that this protein may be functionally sequestered by viral RNAs. Consistent with this model, the alternative splicing of mRNAs that is normally controlled by PTBP1 is dysregulated during SARS-CoV-2 infection. Collectively, these data suggest that the SARS-CoV-2 leader RNA sequesters the cellular PTBP1 protein during infection, resulting in significant impacts on the RNA biology of the host cell. These alterations in post-transcriptional gene regulation may play a role in SARS-CoV-2 mediated molecular pathogenesis.


Asunto(s)
COVID-19 , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de Polipirimidina , SARS-CoV-2 , Humanos , Empalme Alternativo , COVID-19/metabolismo , COVID-19/virología , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , SARS-CoV-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA